Definition: A quadrilateral with all four sides equal in length.
Try this Drag the orange dots on each vertex to reshape the rhombus. Notice how the four sides remain the same length and the opposite sides remain parallel.
A rhombus is actually just a special type of parallelogram. Recall that in a parallelogram each pair of opposite sides are equal in length. With a rhombus, all four sides are the same length.It therefore has all the properties of a parallelogram. See Definition of a parallelogram
Its a bit like a square that can 'lean over' and the interior angles need not be 90 °. Sometimes called a 'diamond' or 'lozenge' shape.
Properties of a rhombus
Base Any side can be considered a base. Choose any one you like. If used to calculate the area (see below) the corresponding altitude must be used. In the figure above one of the four possible bases has been chosen.
Altitude The altitude of a rhombus is the perpendicular distance from the base to the opposite side (which may have to be extended). In the figure above, the altitude corresponding to the base CD is shown.
Areas There are several ways to find the area of a rhombus. The most common is (base × altitude). Each is described in Area of a rhombus Distance Perimeter around the rhombus. The sum of its side lengths. SeePerimeter of a rhombus diagonals Each of the two diagonals is the perpendicular bisector of the other. SeeDiagonals of a rhombus
Sedang diterjemahkan, harap tunggu..
